HE TRICYCLIC GRAPHS WITH THE EXTREMUM ZEROTH-ORDERGENERAL RANDIC INDEX

Mahdi Sohrabi-Hghighat ${ }^{1}$, Sirwan Vaisipour ${ }^{2}$
${ }^{1,2}$ Department of Mathematics, Arak University, Arak 38156-8-8349, Iran
${ }^{1}$ m-haghighat@ araku.ac.ir, ${ }^{2}$ sirwan_vp@yahoo.com
ABSTRACT $-A(n, n+2)$-graph G is a connected simple graph with n vertices and $n+2$ edges. If d_{v} denotes the degree of the vertex v, then the zeroth-order general Randic index of the graph G is defined as $R_{\alpha}^{0}(G)=\sum_{v \in V} d_{v}^{\alpha}$, where α is a real number. We characterize, for any α, the ($n, n+2$)-graphs with the extremum (minimum for $0<\alpha<1$ and maximum for $\alpha<0$ or $\alpha>1$) zeroth-order general Randic index of ($n, n+2$)-graphs.

Keywords: $(n, n+2)$-graph, zeroth-order general Randic index, degree sequence

1 INTRODUCTION

Let $G=(V, E)$ be a simple connected graph with the vertex set V and edge set E . For any $v \in V, N(v)$ denotes the neighborhood of v and $d_{v}=|N(v)|$ is the degree of v. The Randic index was defined [1] as, and then generalized by replacing the exponent $-\frac{1}{2}$ by an arbitrary real number α [2]. This graph invariant is called the general Randic index and denoted by R_{α}, i.e $R_{\alpha}(G)=\sum_{u v \in E}\left(d_{u} d_{v}\right)^{\alpha}$. Some results of the general Randic index can be found in [3] .
Kier and Hall [4] defined the zeroth-order Randic index as $R^{0}(G)=\sum_{v \in V} d_{v}^{-\frac{1}{2}}$. Eventualy LI and Zheng [5] defined the zeroth-order general Randic index of graph G
as $R_{\alpha}^{0}(G)=\sum_{v \in V} d_{v}^{\alpha}$, for any real number α. Chen and Deng
[6] characterized the ($n, n+1$)-graph with the maximum and minimum zeroth-order general Randic index for any real number α.
Let $G(k, n)$ be the set of connected simple graphs have n vertices and the minimum degree of vertices is k. Pavlovic and Gutman [7] used linear programming formulation and calculated the minimum value of Randic index for $G(1, n)$. For $k=2$ the minimum value of Randic index was obtained in [8]. Li et al. [9] studied the famous conjecture of minimum Randic index for $G(k, n)$, however, faced with a serious problem [10]. In this paper, we investigate the zeroth-order general Randic index $R_{\alpha}^{0}(G)$ of ($n, n+2$)-graphs G, i.e., connected simple graphs with n vertices and $n+2$ edges.

Figure 1: Transformation 1

G
G^{\prime}
Figure 2: Transformation 2

Figure 3: Transformation 3

Figure 4: Lemma 2.4

We use the classification of ($n, n+2$)-graphs given in [11] and find the extremum of $R_{\alpha}^{0}(G)$ in all disjoint classes.
Then, the extremum of $R_{\alpha}^{0}(G)$ of ($n, n+2$)-graphs can be found by comparing the extremum of $R_{\alpha}^{0}(G)$ of all classes. Note that if $\alpha=0$ then $R_{\alpha}^{0}(G)=n$, and if $\alpha=1$ then $R_{\alpha}^{0}(G)=2 m$. Therefore in the following we always assume that $\alpha \neq 0,1$.

2 Increasing and decreasing transformations

For convenience, we use some transformations given in [6] and some new results in order to increase or decrease the zeroth-order general Randic index.
Transformation 1: If there are two vertices u and v in G such that $d_{u}=p>1, d_{v}=q>1$ and $p \leq q$, in which, the vertices $u_{1}, u_{2}, \ldots, u_{k}$ are adjacent to u, then we put
$G^{\prime}=G-\left\{u u_{1}, u u_{2}, \ldots, u u_{k}\right\}+\left\{v u_{1}, v u_{2}, \ldots, v u_{k}\right\}, 1 \leq k$
$\leq p$, as shown in Figure 1.
Lemma 2.1. For the two graphs G and G^{\prime} were defined in Transformation 1, we have
(I) $\mathrm{R}_{\alpha}^{0}\left(G^{\prime}\right)>\mathrm{R}_{\alpha}^{0}(G)$ for $\alpha<0$ or $\alpha>1$,
(II) $\mathrm{R}_{\alpha}^{0}\left(G^{\prime}\right)<\mathrm{R}_{\alpha}^{0}(G)$ for $0<\alpha<1$.

Proof: See Ref [6].
Transformation 2: Let $u v$ be an edge G, the degree $d_{G}(u)$ of u is $p>1, N_{G}(v)$ is the neighborhood of v and $N_{G}(v)-u$ $=\quad w_{l}, \quad w_{2}, \quad \ldots, w_{l .} . \quad \mathrm{We} \quad$ put $G^{\prime}=G-\left\{v w_{1}, v w_{2}, \ldots, v w_{k}\right\}+\left\{u w_{1}, u w_{2}, \ldots, u w_{k}\right\}$, as shown in Figure 2.

Lemma 2.2. For the two graphs G and G^{\prime} were defined in Transformation 2, we have
(I) $\mathrm{R}_{\alpha}^{0}\left(G^{\prime}\right)>\mathrm{R}_{\alpha}^{0}(G)$ for $\alpha<0$ or $\alpha>1$,
(II) $\mathrm{R}_{\alpha}^{0}\left(G^{\prime}\right)<\mathrm{R}_{\alpha}^{0}(G)$ for $0<\alpha<1$.

Proof: See Ref [6].
Transformation 3: Let G be a graph include subgraph G_{0} and the interior path $W: x_{1} x_{2} x_{3}$, with $d_{G}\left(x_{2}\right)=2$, and vertices x_{1} and x_{3} do not joined in G_{0}. as shown in Figure 3.

Lemma 2.3. For the two graphs G and G^{\prime} were defined in Transformation 3, we have
(I) $\mathrm{R}_{\alpha}^{0}\left(G^{\prime}\right)>\mathrm{R}_{\alpha}^{0}(G)$ for $\alpha<0$ or $\alpha>1$,
(II) $\mathrm{R}_{\alpha}^{0}\left(G^{\prime}\right)<\mathrm{R}_{\alpha}^{0}(G)$ for $0<\alpha<1$.

Proof: By the definition of $\mathrm{R}_{\alpha}^{0}(G)$, we have
$\Delta=R_{\alpha}^{0}\left(G^{\prime}\right)-R_{\alpha}^{0}(G)=\left[(p+1)^{\alpha}+1^{\alpha}\right]-$
$\left[p^{\alpha}+2^{\alpha}\right]=\left[(p+1)^{\alpha}-p^{\alpha}\right]-\left[2^{\alpha}-1^{\alpha}\right]=$
$\alpha\left(\xi^{\alpha-1}-\eta^{\alpha-1}\right)$
where $\eta \in(1,2), \xi \in(p, p+1)$ and $d_{G}\left(x_{1}\right)=p$.
Since $p \geq 2$ therefore $\xi \succ \eta$ and therefore $\Delta<0$ for $0<\alpha<1$ and $\Delta>0$, for $\alpha<0$ or $\alpha>1$.

Lemma 2.4. For the two graphs G and G^{\prime} including a cycle C_{p} and k pendant edges in Figure 4 , we have
(I) $\mathrm{R}_{\alpha}^{0}(G)>\mathrm{R}_{\alpha}^{0}\left(G^{\prime}\right)$ for $\alpha<0$ or $\alpha>1$,
(II) $\mathrm{R}_{\alpha}^{0}(G)<\mathrm{R}_{\alpha}^{0}\left(G^{\prime}\right)$ for $0<\alpha<1$.

Proof: Note that
$\Delta=R_{\alpha}^{0}(G)-R_{\alpha}^{0}\left(G^{\prime}\right)=\left[(\mathrm{q}+\mathrm{k}+1)^{\alpha}+2^{\alpha}\right]-$
$\left[(q+1)^{\alpha}+(k+2)^{\alpha}\right]=\left[(\mathrm{q}+\mathrm{k}+1)^{\alpha}-(q+1)^{\alpha}\right]$
$-\left[(k+2)^{\alpha}-2^{\alpha}\right]=\alpha k\left(\xi^{\alpha-1}-\eta^{\alpha-1}\right)$
Where $d_{G}(u)=q, \quad \eta \in(2, k+2), \xi \in(q+1, \mathrm{q}+\mathrm{k}+1)$, If q $+1>k+2$. Therefore $\Delta<0$ for $0<\alpha<1$ and $\Delta>0$, for $\alpha<0$ or $\alpha>1$. On the other hand
$\Delta=R_{\alpha}^{0}(G)-R_{\alpha}^{0}\left(G^{\prime}\right)=\left[(\mathrm{q}+\mathrm{k}+1)^{\alpha}+2^{\alpha}\right]-$
$\left[(q+1)^{\alpha}+(k+2)^{\alpha}\right]=\left[(\mathrm{q}+\mathrm{k}+1)^{\alpha}-(k+2)^{\alpha}\right] \quad$ Where
$-\left[(q+1)^{\alpha}-2^{\alpha}\right]=\alpha(q-1)\left(\xi^{\alpha-1}-\eta^{\alpha-1}\right)$
$d_{G}(u)=q, \eta \in(2, q+1), \xi \in(k+2, \mathrm{q}+\mathrm{k}+1)$, If $k+2>q+1$.
Therefore $\Delta<0$ for $0<\alpha<1$ and $\Delta>0$, for $\alpha<0$ or $\alpha>1$
3 The extremum zeroth-order general Randic index of ($\mathrm{n}, \mathrm{n}+2$)-graphs
Let $G(n, n+2)$ be the set of simple connected graphs with n vertices and $n+2$ edges. In this chapter, we use the classification of $G(n, n+2)$ given in [11] and find an extremum zeroth-order general Randic index $R_{\alpha}^{0}(G)$ of each class of $G(n, n+2)$ (see Figure 5). The extremum (minimum for $0<\alpha<1$ and maximum for $\alpha<0$ or $\alpha>1$) of $R_{\alpha}^{0}(G)$ will obtain by comparing the extremum of $R_{\alpha}^{0}(G)$ of all classes.
To this end, we use three increasing/decreasing transformations 1,2,3 and the lemma 2.4, have been described in previous chapter. By using and repeating these transformations we will increase/decrease $R_{\alpha}^{0}(G)$ of each class of $G(n, n+2)$ as much as possible.
Initially, repeating transformation 2 , any graph G in $G(n$, $n+2$) can be changed into a graph, in which, the edges not on the cycles are pendant edges. In the second step, by using Transformation 1 , we reach a graph, in which, the pendant edges have been attached to a single vertex. Then we apply the Transformation 3 to minimize the length of cycles. Transformation 3 is repeated till it is possible. This step reduces the cycles to C_{3} or C_{4}. Now, we have a graph that all its pendant edges were attached to a set of vertices. Once again, applying the Transformation 1, we reach a graph, in which, all pendant edges have been attached to a single vertex. By using the Lemma 2.4, we give up some cases (those their pendant edges have been attached to the vertex of degree 2 of cycles). Now we calculate the $R^{0}(G)$ of extremal graphs in each class.
All nineteen classes of $G(n, n+2)$ have been Shawn in the second column of Figure 5, the third column represents the final graph(s) obtained by using the above process in each classes as described.

Clus	Oniginal graph	Final gaph(s)		
1		范		$\begin{aligned} & (n-1)^{a}+6 \times 2^{\alpha} \\ & +(n-7) \end{aligned}$
2	000	为		$\begin{aligned} & (n-3)^{n}+5 \times 2^{n}+ \\ & 4^{n}+(n-7) \end{aligned}$
3	$00-0$	${ }^{+1}$ ∞		$\begin{aligned} & (n-4)^{\alpha}+5 \times 2^{\alpha}+ \\ & 2 \times 3^{\alpha}+(n-8) \end{aligned}$
4	80			$\begin{aligned} & (n-3)^{n}+6 \times 2^{n}+ \\ & 3^{n}+(n-8) \end{aligned}$
5	$10-0$			$\begin{aligned} & (n-6)^{n}+5 \times 2^{n}+ \\ & 3 \times 3^{n}+(n-9) \end{aligned}$
6	0	$\stackrel{A}{\Delta}$		$\begin{aligned} & (n-5)^{\alpha}+6 \times 2^{\alpha}+ \\ & 2 \times 3^{\alpha}+(n-9) \end{aligned}$
7	O	$\frac{\nabla}{A}$		$\begin{aligned} & (n-5)^{\alpha}+6 \times 2^{\alpha}+ \\ & 2 \times 3^{\alpha}+(n-9) \end{aligned}$
8	$(D$			$\begin{aligned} & (n-3)^{\alpha}+2 \times 2^{\alpha}+ \\ & 3 \times 3^{\alpha}+(n-6) \end{aligned}$
9	0	Δ	Δ	$\begin{aligned} & (n-1)^{\alpha}+2 \times 2^{\alpha}+ \\ & 2 \times 3^{\alpha}+(n-5) \\ & \hline \end{aligned}$
10	$(\mathbb{1})$	$\$$		$\begin{aligned} & (n-1)^{\alpha}+3 \times 2^{\alpha}+ \\ & 4^{\alpha}+(n-5) \end{aligned}$
11	θ	$\otimes \geqslant$		$\begin{aligned} & (n-1)^{\alpha}+3 \times 3^{\alpha} \\ & +(n-4) \end{aligned}$
12		$\forall<\sqrt{*}$	$\stackrel{H}{*}$	$\begin{aligned} & (n-4)^{\alpha}+3 \times 2^{\alpha}+ \\ & 3 \times 3^{\alpha}+(n-7) \end{aligned}$
13		$\forall 1$	$\Delta \mathbb{k}$	$\begin{aligned} & (n-3)^{\alpha}+4 \times 2^{\alpha}+ \\ & 2 \times 3^{\alpha}+(n-7) \end{aligned}$
14	0			$\begin{aligned} & (n-1)^{n}+4 \times 2^{n}+ \\ & 3^{n}+(n-6) \end{aligned}$
15	Do			$\begin{aligned} & (n-2)^{n}+3 \times 2^{n}+ \\ & 2 \times 3^{n}+(n-6) \\ & \hline \end{aligned}$
16	0			$\begin{aligned} & (n-2)^{n}+3 \times 2^{n}+ \\ & 2 \times 3^{n}+(n-6) \end{aligned}$
17	0	$\otimes \ggg>$		$\begin{aligned} & (n-3)^{\alpha}+2 \times 2^{\alpha}+ \\ & 3 \times 3^{\alpha}+(n-6) \end{aligned}$
18	$(-)$	$\rightarrow \infty$	$\Delta \Delta$	$\begin{aligned} & (n-4)^{a}+3 \times 2^{a}+ \\ & 3 \times 3^{a}+(n-7) \end{aligned}$
19	(1)		4.	$\begin{aligned} & (n-2)^{a}+3 \times 2^{a}+ \\ & 2 \times 3^{a}+(n-6) \end{aligned}$

Figure 5: Original graph, Final graph(s) and The extremum zeroth-order general Randic index in 19 classes.
The forth column represents the extremum zeroth-order general Randic index of classes (maximum for $0<\alpha<1$ and minimum for $\alpha<0$ or $\alpha>1$). For any real number α, the extremum zeroth-order general Randic index can be found by comparing the values of forth column. As an example, the maximum zeroth-order general Randic index for $\alpha=0.5$ and $n=15$ is equals 21.509861 which is related to class 7.

REFERENCES

[1] M. Randic, On the characterization of molecular branching, J. Am. Chem. Soc. 97 (1975) 6609-6615.
[2] L.B. Kier, L.H. Hall, Molecular Connectivity in Structure-analysis, Re-search Studies Press, Wiley, Chichester, UK, 1986.
[3] X.Li and H. Zaho, Trees with the rst three smallest and largest gener-alized topological indices, MATCH Commun.Math. Comput.Chem. 52 (2004) 157-210.
[4] L.B. Kier, L.H. Hall, The nature of struture-activity relationships and their relation to molecular Connectivity, Eur. J. Med. Chem. 12 (1977) 307312.
[5] X. Li and J. Zheng, A uniedaooroach to the extremal trees for di rent indices, MATCH Commun. Math. Comput. Chem. 54 (2005) 195-208.
[6] S. Chen and H. Deng, Extremal ($n, n+1$)-graphs
with respected to zeroth- order general Randic index, J. Math. chem. (2006) 555-564.
[7] L. Pavlovic, I. Gutman, Graphs with extermal connectivity index, Novi. Sad. J. Math, Vol. 31, No. 2, (2001) 53-58.
[8] L. Pavlovic , Graph with extermal Randic index when the minimum degree of vertices is two, Kragujevac J. Math. 25 (2003) 55-63.
[9] X. Li, B. Liu, J. Liu, Complete solution to a conjecture on Randic index, European Journal of Operational Research, 200 (2010) 9-13.
[10] L. Pavlovic, Comment on Complete solution to a conjecture on Randic index, European Journal of Operational Research, 207 (2010) 539-542.
[11] A. Dolati, M. Haghighat, S. Golalizadeh, M. Safari: The Smallest Hosoya Index of Connected Tricyclic Graphs, MACTH Commun. Math. Comput. Chem. 65(2011) 57-70.

